Chemical composition of the body

 Chemically, the human body consists mainly of water and of organic compounds—i.e., lipids, proteins, carbohydrates, and nucleic acids. Water is found in the extracellular fluids of the body (the blood plasma, the lymph, and the interstitial fluid) and within the cells themselves. It serves as a solvent without which the chemistry of life could not take place. The human body is about 60 percent water by weight.

Lipids—chiefly fatsphospholipids, and steroids—are major structural components of the human body. Fats provide an energy reserve for the body, and fat pads also serve as insulation and shock absorbers. Phospholipids and the steroid compound cholesterol are major components of the membrane that surrounds each cell.

Proteins also serve as a major structural component of the body. Like lipids, proteins are an important constituent of the cell membrane. In addition, such extracellular materials as hair and nails are composed of protein. So also is collagen, the fibrous, elastic material that makes up much of the body’s skin, bones, tendons, and ligaments. Proteins also perform numerous functional roles in the body. Particularly important are cellular proteins called enzymes, which catalyze the chemical reactions necessary for life.

Carbohydrates are present in the human body largely as fuels, either as simple sugars circulating through the bloodstream or as glycogen, a storage compound found in the liver and the muscles. Small amounts of carbohydrates also occur in cell membranes, but, in contrast to plants and many invertebrate animals, humans have little structural carbohydrate in their bodies.

Nucleic acids make up the genetic materials of the body. Deoxyribonucleic acid (DNA) carries the body’s hereditary master code, the instructions according to which each cell operates. It is DNA, passed from parents to offspring, that dictates the inherited characteristics of each individual human. Ribonucleic acid (RNA), of which there are several types, helps carry out the instructions encoded in the DNA.

Along with water and organic compounds, the body’s constituents include various inorganic minerals. Chief among these are calciumphosphorussodiummagnesium, and iron. Calcium and phosphorus, combined as calcium-phosphate crystals, form a large part of the body’s bones. Calcium is also present as ions in the blood and interstitial fluid, as is sodium. Ions of phosphorus, potassium, and magnesium, on the other hand, are abundant within the intercellular fluid. All of these ions play vital roles in the body’s metabolic processes. Iron is present mainly as part of hemoglobin, the oxygen-carrying pigment of the red blood cells. Other mineral constituents of the body, found in minute but necessary concentrations, include cobaltcopperiodinemanganese, and zinc.

Organization of the body

The cell is the basic living unit of the human body—indeed, of all organisms. The human body consists of trillions of cells, each capable of growth, metabolism, response to stimuli, and, with some exceptions, reproduction. Although there are some 200 different types of cells in the body, these can be grouped into four basic classes. These four basic cell types, together with their extracellular materials, form the fundamental tissues of the human body: (1) epithelial tissues, which cover the body’s surface and line the internal organs, body cavities, and passageways; (2) muscle tissues, which are capable of contraction and form the body’s musculature; (3) nerve tissues, which conduct electrical impulses and make up the nervous system; and (4) connective tissues, which are composed of widely spaced cells and large amounts of intercellular matrix and which bind together various body structures. (Bone and blood are considered specialized connective tissues, in which the intercellular matrix is, respectively, hard and liquid.)

The next level of organization in the body is that of the organ. An organ is a group of tissues that constitutes a distinct structural and functional unit. Thus, the heart is an organ composed of all four tissues, whose function is to pump blood throughout the body. Of course, the heart does not function in isolation; it is part of a system composed of blood and blood vessels as well. The highest level of body organization, then, is that of the organ system.

The body includes nine major organ systems, each composed of various organs and tissues that work together as a functional unit. The chief constituents and prime functions of each system are summarized below. (1) The integumentary system, composed of the skin and associated structures, protects the body from invasion by harmful microorganisms and chemicals; it also prevents water loss from the body. (2) The musculoskeletal system (also referred to separately as the muscle system and the skeletal system), composed of the skeletal muscles and bones (with about 206 of the latter in adults), moves the body and protectively houses its internal organs. (3) The respiratory system, composed of the breathing passages, lungs, and muscles of respiration, obtains from the air the oxygen necessary for cellular metabolism; it also returns to the air the carbon dioxide that forms as a waste product of such metabolism. (4) The circulatory system, composed of the heart, blood, and blood vessels, circulates a transport fluid throughout the body, providing the cells with a steady supply of oxygen and nutrients and carrying away waste products such as carbon dioxide and toxic nitrogen compounds. (5) The digestive system, composed of the mouth, esophagus, stomach, and intestines, breaks down food into usable substances (nutrients), which are then absorbed from the blood or lymph; this system also eliminates the unusable or excess portion of the food as fecal matter. (6) The excretory system, composed of the kidneys, ureters, urinary bladder, and urethra, removes toxic nitrogen compounds and other wastes from the blood. (7) The nervous system, composed of the sensory organs, brain, spinal cord, and nerves, transmits, integrates, and analyzes sensory information and carries impulses to effect the appropriate muscular or glandular responses. (8) The endocrine system, composed of the hormone-secreting glands and tissues, provides a chemical communications network for coordinating various body processes. (9) The reproductive system, composed of the male or female sex organs, enables reproduction and thereby ensures the continuation of the species.

Comments

Popular posts from this blog

The heart: All you need to know

fertility rate

The heart’s electrical system